From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes
نویسندگان
چکیده
Increased concentrations of dissolved organic carbon (DOC), often labelled "browning", is a current trend in northern, particularly boreal, freshwaters. The browning has been attributed to the recent reduction in sulphate (S) deposition during the last 2 to 3 decades. Over the last century, climate and land use change have also caused an increasing trend in vegetation cover ("greening"), and this terrestrially fixed carbon represents another potential source for export of organic carbon to lakes and rivers. The impact of this greening on the observed browning of lakes and rivers on decadal time scales remains poorly investigated, however. Here, we explore time-series both on water chemistry and catchment vegetation cover (using NDVI as proxy) from 70 Norwegian lakes and catchments over a 30-year period. We show that the increase in terrestrial vegetation as well as temperature and runoff significantly adds to the reduced SO4-deposition as a driver of freshwater DOC concentration. Over extended periods (centuries), climate mediated changes in vegetation cover may cause major browning of northern surface waters, with severe impact on ecosystem productivity and functioning.
منابع مشابه
Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity.
The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matte...
متن کاملThe Effect of Forest Road Construction on Soil Organic Carbon Stock in Mountainous Catchment in Northern Iran
The main objective of this study was to investigate the effect of forest road construction on the Soil Organic Carbon Stock (SOCS) in Ziarat Catchment. Therefore, soil samples were collected from five land use types including road construction, cultivated area, channel bank, pasture and forest land and soil organic carbon concentration and bulk density were measured in the samples and SOCS were...
متن کاملIdentifying environmental controls on vegetation greenness phenology through model–data integration
Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbo...
متن کاملIn-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes
Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is kn...
متن کاملEvaluating common drivers for color, iron and organic carbon in Swedish watercourses
The recent browning (increase in color) of surface waters across much of the northern hemisphere has important implications for light climate, ecosystem functioning, and drinking water treatability. Using log-linear regressions and long-term (6-21 years) data from 112 Swedish watercourses, we identified temporal and spatial patterns in browning-related parameters [iron, absorbance, and total or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016